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Abstract

In this paper, we describe C64prof, a profiler and visualizer we have created for the Cyclops64
architecture.

Motivated by a desire for an easy-to-use, low-overhead parallel performance analysis tool, we
made use of two features of Cyclops64’s environment - the hardware event counting library and
the Cyclops64 compiler’s automated instrumentation capability - to provide the programmer with
a powerful, flexible tool for gathering program performance data. This data can be fed into the
C64prof visualizer, which in turn can analyze the profile traces to produce digested output (including
graphs).

We present three case studies using the profiler - two stand-alone applications (FDTD and
Matrix-matrix multiply) and the SPLASH2 benchmarks to show that the profiler has low-overhead.
Using lines of code added or modified as our metric, we also show that the profiler is extremely easy
to use, typically requiring only a very small number of changes to code or makefiles.
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1 Introduction

Cyclops64 is a high-performance multi-core architecture developed by IBM. Past experiments have
shown that programs running on the Cyclops64 architecture can achieve very high performance, but
experience has also shown that program execution and performance tends to be opaque and difficult to
analyze. C64prof is a profiler designed to address this problem by giving the programmer a flexible,
easy-to-use tool to allow him to quickly determine the root cause of performance bottlenecks.

The rest of this paper is organized as follows: section 2 gives a brief overview of profilers and the
Cyclops64 architecture; section 3 gives an overview of C64prof; section 4 presents data regarding the
overhead from using C64prof; section 5 presents data on the profiler’s ease of use as measured by line
count changes in the application source code and makefiles; section 6 describes C64prof’s visualizers,
which are designed to digest tracefiles into graphic representations which are easier for the programmer
to understand; section 7 gives conclusions of the data presented in this paper; and section 8 describes
future work to be done with C64prof.

2 Background

2.1 Profiling

As high performance architectures have become larger and increasingly complex, program execution
has correspondingly become more opaque. The larger the machine and more complex the programming
environment, the harder it is for programmers to anticipate bottlenecks and performance maladies. To
address this difficulty, a number of performance measurement and analysis tools have been developed.

Profilers often differ in how they select which points in program execution shall be instrumented
(manually by the programmer, compiler-selected, event-triggered, etc); in how the program itself is
instrumented, if at all (by the compiler during compilation time, by a source-to-source translator, by a
binary-to-binary translator, etc); and in the purpose for which the profiler is being used. Frequently,
these programs output data files pertaining to program execution, known as traces, which can be parsed
and analyzed by other performance analysis tools.

Table 1 gives a summary of some of these tools.

The Cyclops64 profiler was motivated by experiences in the Parallel Architecture Laboratory (PAL),
formerly of Los Alamos National Laboratory and now located at Pacific Northwest National Laboratory.
The PAL group had developed a tool in house, the PAL profiler, which served as the inspiration for
C64prof. The PAL Profiler was intended for use on large distributed memory clusters running MPI
applications. It’s advantages, versus standard off-the-shelf profilers such as Tau, are fourfold:

• The PAL profiler is smaller, making it easier to port from one system to another

• The PAL profiler is simpler, meaning that there are fewer ways it can degrade the target program’s
performance
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Table 1: Common (dynamic) performance measurement and analysis tools

Name
Instrumentation
type

Year Description

Prof [19] Compile-time 1979 Uses interrupt-based alarm clock and program counter sam-
pling to measure runtime for functions within a program

Gprof [10] Compile-time 1982 Uses prof to gather program execution statistics, but aug-
ments it by generating call-graphs

Purify [12] Compile-time 1992 Instruments memory accesses to detect invalid ones and
memory leaks.

ATOM [6] Binary compilation 1994 General purpose - inserts programmer-defined functions into
target program.

TAU[1] Compile-time, run-
time

1994 General purpose - inserts programmer-defined functions into
target program at source, or during compile-time or runtime.

QPT [13] Compile-time 1994 Counts basic blocks in target program

Eraser [18] Binary compilation 1997 Implemented using ATOM. Detects data races arising from
incorrect use of locks for shared variables

PAPI[2] None 1999 Cross-platform API for accessing CPU event counters

OProfile[17] Runtime 2000 Uses kernel routines to sample the program counter and CPU
event counters

DIDUCE [11] Compile-time 2002 Dynamically determines program invariants and exceptions
thereto

Ccured [15] Compile-time 2002 Uses run-time checking to enforce type safety in C programs

Valgrind [16] JIT binary transla-
tion

2003 General purpose - Inserts programmer-defined functions into
target program.

DynamoRio [3] Binary compilation 2004 General purpose - Inserts programmer-defined functions into
target program.

PIN [14] JIT binary transla-
tion

2005 General purpose - Inserts programmer-defined functions.
Execution occurs on a PIN VM.

• The PAL profiler, owing to the fact that it was designed in house, was better understood by the
PAL team in terms of how it operated and impacted the instrumented program’s behavior.

• Owing to all of the above, the PAL profiler is easier to modify.

C64prof started as a black-box reimplementation of the PAL profiler targeted towards the Cyclops64
architecture.† C64prof soon evolved, gaining features that are specific to the Cyclops64 architecture
and software ecosystem.

2.2 The C64 architecture

The Cyclops64 (C64) architecture is designed to serve as a dedicated petaflop compute engine for run-
ning high performance applications. A complete C64 system consists of up to 13,824 processing nodes,
arranged in a 3D-mesh network. Each processing node consists of a C64 chip, external DRAM, and a
small amount of external interface logic. A C64 chip employs a many-core-on-a-chip design with 80

†Black box in the sense that the internal workings of the PAL profiler were never examined.
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Figure 1: A logical view of the Cyclops64 architecture

processors. Each processor includes two thread units, one floating-point unit and two 32KB SRAM
memory banks. 32KB instruction caches are shared by five processors each. An interface to the off-chip
DDR2 SDRAM memory and bidirectional inter-chip routing ports completes the design. The C64 chip
has no data cache. Instead a portion of each SRAM bank can be configured as scratchpad memory
(SP). The remaining sections of SRAM combined form the global memory (GM) that is uniformly ad-
dressable from all thread units. On-chip resources are connected by a 96-port crossbar network, which
provides a 4GB/s bandwidth per port, in total 384GB/s on each direction. This huge bandwidth sustains
all the intra-chip traffic communication and the six routing ports that connect each C64 chip to its nearest
neighbors in the 3D-mesh network. [4] [8]

The processors and memories are lain out in “dancehall” fashion, with processors on one side of the
crossbar switch and general memories on the other. In addition to connecting to the general memories
through the crossbar switch each processor also has a low-latency access pathway to its own scratch pad
memory (shown in figure 1 with dashed lines). Each processor has two integer execution units, which
share a single float-floating point unit.

The C64 architecture represents a major departure from mainstream microprocessor design in sev-
eral respects. The C64 chip integrates processing logic, embedded memory and communication hard-
ware in the same piece of silicon. However, it provides no resource virtualization mechanisms. For
instance, execution is non-preemptive and there is no hardware virtual memory manager. The former
means one single application can run at a given time on a set of C64 nodes and the C64 microkernel will
not interrupt the user application unless an exception occurs. The latter means the three-level memory
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hierarchy of the C64 chip is visible to the programmer. From the processing core standpoint, a thread
unit is a simple 64-bit, single issue, in-order RISC processor with a small instruction set architecture,
operating at a moderate clock rate (500MHz). Nonetheless, it incorporates efficient support for thread
level execution. For instance, a thread can stop executing instructions for a number of cycles or indef-
initely and it can be woken up by another thread through a hardware interrupt. C64 also provides an
extremely fast hardware implementation of the barrier synchronization primitive.

3 C64prof

C64prof is a we have profiler created to assist Cyclops64 programmers in analyzing the behavior of
their applications and improving their performance. The programmer may specify events to be counted
by the profiler using the architecture’s two hardware event counters. C64prof uses automated compiler
instrumentation to insert calls to monitoring functions at the entry and exit points of functions. These
monitoring functions record the event type (which function is being entered or exited, or which SHMEM
function was just called), the time at which the event occurred, the thread ID of the host on which it
occurred, and the hardware event counts at the time the event occurred.

The gcc compiler contains a flag, -finstrument-functions, that instructs the compiler to automatically
add instrumentation calls. To wit: “-finstrument-functions: Generate instrumentation calls for entry and
exit to functions. Just after function entry and just before function exit, the following profiling functions
will be called with the address of the current function and its call site.

• void cyg profile func enter (void *this fn, void *call site);

• void cyg profile func exit (void *this fn, void *call site);” [7]

The monitoring function parameter this fn points to the monitoring function itself, and call site is a
pointer to the function that triggered the monitoring function. It is worth noting that in Posix-complaint
C, it is not possible to get a function’s name from its pointer. However, it is possible using the Glibc
functions dladdr or backtrace. The Cyclops64 compiler has a flag, -fcall-stack-profile, that replicates
the behavior of gcc’s -finstrument-functions identically except for the monitoring function names and
prototypes.

3.1 The C64prof API

The C64prof API consists of seven programmer-facing API calls: an initialization function ( noprofile cygprofile init)
which is used to initialize the profiler and Cyclops64 event counting library; a shutdown function
( noprofile cygprofile shutdown) which writes out data and sets the profiler to immediately return from
any future instrumentation calls; two manual instrumentation functions ( noprofile cyclops profile begin highpf
and noprofile cyclops profile end highpf) which can be called by the programmer in situations where
automated instrumentation is undesirable or insufficient; and three functions ( noprofile set logfile size,
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noprofile set max recursion depth, and noprofile get max recursion depth) which allow the program-
mer to set how much RAM will be allocated to profiler data store, the maximum recursion stack depth
after which, instrumentation calls will immediately return, and to query the current recursion stack size.

3.1.1 noprofile cygprofile init

Prototype: int noprofile cygprofile init (int beverbose, int myrank, int e0, int e1)

Description: noprofile cygprofile init initializes the profiler and ECL macros. Following a suc-
cessful call, the profiler will be initialized, and events will be recorded by the profiler. Although the
instrumentation routines may be called prior to the initialization function, they will return without effect
until the initialization function is called.

Parameters:

• beverbose - This parameter is deprecated. (Previously, a 1 indicated verbose output, and 0 indi-
cated quiet output). Current versions of the profiler ignore this value.

• myrank - this is an integer with value 0 or greater. Each thread must pass a unique value to this
function. This value will be used to name the output file - for example, if one thread calls init with
myrank=2, and another thread calls it with myrank=3, their output files will be report-0002.txt
and report-0003.txt, respectively. It is recommended that the programmer use tnt my pe() for this
parameter.

• e0 - This integer specifies which event to count. It must be -1 (to indicate that no event is to
be counted) or equal to one of the values defined in the ECL library, which are given here:
http://www.capsl.udel.edu/internal/cyclops-64/online-manual/release-2.3/C64ProgrammingManual.htm# Toc177184624

• e1 - This integer specifies which event to count. It must be -1 (to indicate that no event is to
be counted) or equal to one of the values defined in the ECL library, which are given here:
http://www.capsl.udel.edu/internal/cyclops-64/online-manual/release-2.3/C64ProgrammingManual.htm# Toc177184624

Return values:

• 0 - if no error occurred

• 1 - an error occurred while attempting to open the output file

• 2 - an error occurred while attempting to set the first hardware event counter (c64ecl set returned
error)

• 3 - an error occurred while attempting to set the second hardware event counter (c64ecl set re-
turned error)

• 4 - an error occurred while attempting to start counting in the first event counter (c64ecl start
returned error)
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• 5 - an error occurred while attempting to start counting in the second event counter (c64ecl start
returned error)

• 6 - an error occurred while allocating RAM for profiler data storage

3.1.2 noprofile cygprofile shutdown

Prototype: void noprofile cygprofile shutdown(void)

Description: noprofile cygprofile shutdown shuts down the profiler and writes all unwritten data to
the logfile. No further logging occurs after a successful call.

Parameters: None

Return values: None

3.1.3 noprofile cyclops profile begin highpf

Prototype: void cyclops profile begin highpf(uint64 t label)

Description: noprofile cyclops profile begin highpf is used by the programmer to manually in-
strument code. Its effects are identical to cyclops profile begin, which is automatically called by the
compiler. Labels are used in place of function names.

Parameters:

• label - an unsigned 64 bit integer representing the name of the section of code that is to be entered.
Note: in order for the visualizer to work correctly on the output files, every entry label must have
a corresponding exit label which is called on a one-for-one basis.

Return values: None

3.1.4 noprofile cyclops profile end highpf

Prototype: void cyclops profile end highpf (uint64 t label)

Description: noprofile cyclops profile end highpf is used by the programmer to manually instru-
ment code. Its effects are identical to cyclops profile end, which is automatically called by the compiler.
Labels are used in place of function names.

Parameters:

• label - an unsigned 64 bit integer representing the name of the section of code that is to be exited.
Note: in order for the visualizer to work correctly on the output files, every exit label must have a
corresponding entry label which is called on a one-for-one basis.

Return values: None
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3.1.5 noprofile set logfile size

Prototype: void noprofile set logfile size(uint64 t nsize)

Description: Each profiler instance allocates RAM to be used to store the characters which are later
written to the logfile. By default, the size of this RAM allocation (the internal variable LOGFILESIZE)
is 5 megabytes (= 5 × 1024 × 1024 bytes). The programmer can set this value on a per-profiler thread
basis by calling noprofile set logfile size. The smaller this value is, the less total RAM the profiler will
consume; the higher this value is, the less frequently the profiler will flush data to the report files, in turn
improving the performance.

Parameters:

• nsize - an unsigned 64 bit integer representing the number of bytes for each instance of the profiler
to allocate for character storage prior to writing to the file system. This parameter must be at least
213 (greater than twice MAXENTRYSIZE, the maximum size of each entry in the logfile, which
is defined as 111), or the function will fail an assertion and the program will abort.

3.1.6 noprofile set max recursion depth

Prototype: void noprofile set max recursion depth (uint64 t depth)

Description: noprofile set max recursion depth is used by the programmer to limit the number of
function calls that will be recorded. This is critically important in programs with large numbers of
function calls whose performance would be degraded by excessive instrumentation.

Parameters:

• depth - an unsigned 64 bit integer. If the profiler has observed more function calls than this value,
function entries (either compiler triggered or manually triggered using noprofile cyclops profile begin highpf)
will not be recorded.

Return values: None

3.1.7 noprofile get max recursion depth

Prototype: uint64 t noprofile get max recursion depth (void)

Description: noprofile set max recursion depth is used by the programmer to get the current size
of the program stack as observed by the profiler

Parameters: None

Return values: returns the current recursion depth
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3.2 PSHMEM - A Profiling Library for SHMEM

PSHMEM is C64prof’s profiling wrapper for SHMEM, a library that allows processors in shared-
memory architectures to make interrupt-free accesses to other processors’ RAM. Each SHMEM call
has a matching PSHMEM call, whose name is the same except with noprofile prepended. Both the
SHMEM call and its matching PSHMEM call have identical function prototypes.

For example, SHMEM includes this function: void shmem set lock (long *lock). Its PSHMEM
equivalent is: void noprofile shmem set lock (long *lock). Note that the number of arguments, argu-
ment names, argument types, and return type are identical.

By default, PSHMEM calls produce trace output formatted identically to non-SHMEM function
calls. (See the stack trace given above for sample PSHMEM output) However, the 1:1 mapping of
PSHMEM to SHMEM calls means that programmers, if they so desire, can modify any or all PSHMEM
calls to produce any output they desire.

3.3 Example program and C64prof trace

Consider the following simple C64prof test program (example.c in the C64prof distribution):

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <c64ecl.h>

#include <stdlib.h>

#include <time.h>

#include ‘‘palprofiler.h’’

#include ‘‘cnet.h’’

#include <shmem.h>

int F1(void);

int F2(void);

int F3(void);

int workfunc(int seed){

int cnt, x, iters, worknum[4];

srand ( time(NULL) +tnt_my_thread()+seed);

iters = rand() % 100;

worknum[0]= rand() % 100;

worknum[1]= rand() % 100;

worknum[2]= rand() % 100;

worknum[3]= rand() % 100;

for (x=0; x<iters; x++){

cnt *= worknum[rand()%4];

}

return cnt;

}

int F1()

{
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long val1, val2, val3;

_noprofile_cyclops_profile_begin_highpf (100);

val1 = _noprofile__is_spmd();

val2 = _noprofile_my_pe();

val3 = _noprofile_num_pes();

_noprofile_cyclops_profile_end_highpf (100);

return val1+val2+val3;

}

int F2()

{

return F1()+workfunc(1)+workfunc(2)+workfunc(3)+workfunc(4);

}

int F3()

{

return F2()+F1();

}

int main()

{

int rval;

int myrank = tnt_my_thread();

tnt_barrier_t barrier;

printf(‘‘Rank %d: Running.\n’’, tnt_my_thread());

rval = _noprofile_cygprofile_init(0, tnt_my_thread(), c64ecl_event_insn, c64ecl_event_load);

if (rval != 0){

printf(‘‘Rank %d: Error - cygprofile_init did not run correctly. Returned %d\n’’, myrank, rval);

return rval;

}

printf(‘‘Rank %d: Profiler initialized. Initializing SHMEM.\n’’, myrank);

_noprofile_shmem_init();

printf(‘‘Rank %d: SHMEM initialized. Beginning program execution.\n’’, myrank);

F3();

printf(‘‘Rank %d: Work terminated. Profiler shutting down\n’’, myrank);

_noprofile_cygprofile_shutdown();

shmem_finish();

return 0;

}

This program tests the profiler’s ability to profile ordinary function calls as well as SHMEM function
calls. Workfunc generates a workload that is pseudorandom in both size and nature, meaning that each
thread will have profiler traces that are different from each other, and different from themselves if the
program is re-run.

When run, the code produced the following trace from the 0th processor:
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Recorded c64ecl_event_insn,c64ecl_event_load

87563,-1,P_START

179404,-1,E,_noprofile__is_spmd,8641,695

250842,-1,X,_noprofile__is_spmd,39550,497

327124,-1,E,F3,3241,284

337378,-1,E,F2,104,11

347424,-1,E,F1,97,11

359266,-1,E,100,741,72

368981,-1,E,_noprofile__is_spmd,79,9

380284,-1,X,_noprofile__is_spmd,82,8

391532,-1,E,_noprofile__is_spmd,81,9

402838,-1,X,_noprofile__is_spmd,82,8

414143,-1,E,_noprofile__is_spmd,81,9

425444,-1,X,_noprofile__is_spmd,82,8

438660,-1,X,100,743,72

448404,-1,X,F1,97,11

458309,-1,E,workfunc,107,11

475565,-1,X,workfunc,1296,138

486227,-1,E,workfunc,117,13

500943,-1,X,workfunc,861,93

511408,-1,E,workfunc,117,13

525448,-1,X,workfunc,745,81

535912,-1,E,workfunc,117,13

553670,-1,X,workfunc,1383,147

564313,-1,X,F2,109,13

574373,-1,E,F1,107,13

586311,-1,E,100,741,72

596033,-1,E,_noprofile__is_spmd,79,9

607332,-1,X,_noprofile__is_spmd,82,8

618645,-1,E,_noprofile__is_spmd,80,9

629944,-1,X,_noprofile__is_spmd,82,8

641247,-1,E,_noprofile__is_spmd,80,9

652494,-1,X,_noprofile__is_spmd,82,8

665716,-1,X,100,742,72

675456,-1,X,F1,97,11

685413,-1,X,F3,97,11

723622,-1,P_STOP,,2956,265

The first column is the time (in cycles since the start of program execution) at which an event
occurred. The second column (-1) has no meaning. (It exists because C64prof was originally intended
to be backwards compatible with the visualization toolchain created for the PAL profiler at Los Alamos
National Laboratory). The third column is the type of event recorded. An “E” denotes a function entry;
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an “X” denotes a function exist; “P START” indicates the initialization function being called; “P STOP”
indicates the shutdown function being called. The fourth column, where one is given, gives the name
of the function call being profiled. Names indicate compiler-profiled functions, and numbers indicate
labels given by the programmer to manually instrumentation calls. The final two columns, the fifth and
sixth, give the number event hardware event counts recorded when those events occurred. The event
counters are cleared after every function entry or exit.

The first line in the file is the name of events to be profiled. The event names are derived from labels
given to them in the Cyclops64 event counting library. (See that library’s documentation for further
details.) In the case of the above trace, the events counted were the number of instructions and loads
executed, respectively.

3.4 Interpreting the C64prof trace

When analyzing a program, a programmer will want to know how many of a certain type of event
occurred during the execution of a particular function. This can be calculated from the trace files.
Consider the following segment from the C64prof trace given in section 3.3:

347424,-1,E,F1,97,11

359266,-1,E,100,741,72

368981,-1,E,_noprofile__is_spmd,79,9

380284,-1,X,_noprofile__is_spmd,82,8

391532,-1,E,_noprofile__is_spmd,81,9

402838,-1,X,_noprofile__is_spmd,82,8

414143,-1,E,_noprofile__is_spmd,81,9

425444,-1,X,_noprofile__is_spmd,82,8

438660,-1,X,100,743,72

448404,-1,X,F1,97,11

Function F1 calls (manually-instrumented psedu-function) 100, which calls noprofile is spmd
multiple times. Diagrammatically, this can be expressed as figure 2.

As the diagram makes clear, events which are executed by some target function will be recorded
by the profiler either during the entry (“E”) event of another function called by the target function, or
when the target function returns. (In the diagram, these would be the arrows pointing away from the
target function, either to its left or right). Mathematically, the target function’s event count (EC) can be
expressed as:

ECexclusive = ΣEC@call + ECexit (1)

where EC@call are the event counts recorded when entering functions called by the target function,
and ECexit is the event count recorded when the target function exits. This approach is exclusive because
it excludes events that occur in functions called by the target function. However, for debugging purposes,
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Figure 2: A diagrammatic view of the C64prof trace

it may also be useful to the programmer to include these. This inclusive approach can be expressed
mathematically as:

ECinclusive = ΣEC@call + ΣECcalled + ECexit (2)

where ΣECcalled is the sum of all the events that occur in all functions called by the target function.

In figure 2, F1’s exclusive event count for the first profiled event would be 741 (the number of events
that had occurred at the time it called function 100) + 97 (the value when the function returns); if calcu-
lated inclusively, it is 741+79+82+79+82+79+82+743+97. Both inclusive and exclusive approaches
have performance analysis value to the programmer.

4 Runtime Overhead

When using automated instrumentation, C64prof’s overhead occurs at function calls. Therefore C64prof’s
runtime factor increase (the factor by which program runtime is increased when using C64prof) will be
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directly proportional to the granularity of the function calls. A program with lots of work in few function
calls will experience little overhead; conversely, a program with many fine-grained function calls will
experience a correspondingly high overhead.

In order to evaluate the runtime overhead from using the profiler, we ran instrumented versus unin-
strumented comparative tests using two scientific applications - Matrix-Matrix multiply and Finite-
difference time-domain method - and most of the benchmarks in the Splash2 suite. The Splash2 bench-
marks were implemented using their respective default problem sizes.†

Data was collected using the Cyclops64 functionally accurate simulator. The cycles per event was
calculated by taking the profiled runtime, subtracting the unprofiled runtime, and dividing by the number
of profiler-recorded events.

4.1 Splash2 benchmark suite

Table 2: C64prof overhead on the Splash2 benchmarks

Benchmark
Unprofiled
Runtime
(Cycles)

Profiled
Runtime
(Cycles)

Runtime
increase
factor

Event
count

Cycles
per event

Barnes-Hutt 30592638 72671602 2.38 131161 † 320.82 †
Ocean (Contiguous partitions) 66041 86154 1.30 1708 11.78
Ocean (Non-Contiguous partitions) 62052 88604 1.43 1842 14.41
Water (Spatial) 14052219 14052721 1.00 19 26.42
Water (N-Squared) 10649200 10649590 1.00 19 20.53
FMM 288997 795188 2.75 32659 15.50

4.2 Finite-difference time-domain method

The Finite-difference time-domain method (FTDT) application we profiled was written by Daniel Orozco
in C. It tests various tiling approaches to FDTD. We profiled the application using a real-world problem
size.

Table 3: C64prof overhead on the FTDT

Threads
Unprofiled run-
time (Cycles)

Profiled Run-
time (Cycles)

Runtime In-
crease factor

Events Cycles per
event

19 956101903 956474437 1.0003 534 697.63
127 146238833 147576976 1.009 3738 357.98

†: In order to run in a reasonable time on the simulator, a stack limit of 4 was used on Barnes-Hutt simulations. Therefore,
the number of counted events is only a tiny fraction of the actual number of events, which was 99,977,608. Events which were
below the stack limit triggered an entry into an instrumentation function call, followed by an if statement and then a return,
thus slightly increasing the program runtime but not as much as a full recording.
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4.3 Assembly-coded matrix-matrix multiply

Cyclops64 has been the target of successful attempts to implement high-performance matrix-matrix
multiply, as described in [9]. We used this implementation as the basis for experiments testing the
profiler with high-performance code. The computation in this code is hand-written in highly-optimized
assembly, allowing it to achieve more than half of Rmax, the maximum theoretical performance of the
Cyclops64 chip. This highly optimized code which has no function calls for the compiler to instrument
presents an interest worst-case scenario for the profiler both performance-wise and usability-wise.

We profiled the code using the manual instrumentation functions, noprofile cyclops profile begin highpf
and noprofile cyclops profile end highpf (described in sections 3.1.3 and 3.1.4 above) along with the
requisite initialization and shutdown calls.

Table 4: C64prof overhead on the Matrix-matrix multiply

Threads
Unprofiled
runtime
(Cycles)

Profiled
Runtime
(Cycles)

Runtime
Increase
factor

Event
count

Cycles
per event

4 2709778 9657752 3.56 1160 5989.63
16 717702 4945521 6.89 1184 3570.79
64 583495 3705473 6.35 1280 2439.05
100 1150038 2786087 2.42 1000 1636.05
144 2018043 3809037 1.88 1440 1243.75

The irregularity of the overhead here is the result of using an increasing number of processors to
process a fixed-size matrix-matrix multiply, which results in a stair-stepping distribution of work. (This
can also be seen by dividing the number of events by the number of threads.)

5 Ease of Use

Ease of use is an important quality any piece of software, though notoriously difficult to quantify. In
the case of C64prof, lines of code added or changed (LOC) in order to use the profiler is an adequate
though imperfect proxy measurement of C64prof’s ease of use. Table 5 gives the LOC for each splash
benchmark, and that benchmark’s accompanying Makefile.

Table 5: Lines of code add/modified in order to get C64prof to profile the Splash benchmarks
Code Makefile

Barnes 5 16
Ocean (Contingious partions) 4 5
Ocean (Non-contingious partions) 4 5
Water-spatial 4 29
Water-nsquared 4 29
FMM 4 5
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6 C64prof Data Visualization

C64prof includes a powerful visualizer. The visualizer parses C64prof report files to generate one or
more GNUplot command files, and then invokes GNUplot on the command files to generate images.
The visualizer operates in single or multiple-pass mode. In single-pass mode, traces are analyzed for a
single run of a profiled application. In multi-pass mode, traces from multiple runs are analyzed. Those
runs must be logically and programmatically identical except for the hardware events being counted.

6.1 Single-pass mode

In single-pass mode, the visualizer generates an image showing the timing synchronization between
various threads and the functions they invoke (figure 3), and one image for each type of hardware event
being counted (figure 4)

Figure 3: The C64prof visualizer in single-event mode synchronization graph for example.c

Figure 3 gives the single-pass mode output from the visualizer using the report files generated from
example.c (described above in section 3.3). The X-axis represents the time (in cycles), and the Y-axis

15



Figure 4: The C64prof visualizer event count graph generated from example.c trace data (cropped view)

represents the profiler rank, which is passed by the programmer during the profiler initialization call
and typically corresponds to the thread ID. Each rectangle represents a function call on a given host.
Rectangles are deterministically colored according to the name of the function they represent.†

If more specific information is needed, the programmer can get the function names and precise start

†Specifically, the color is given by a hex triplet which is taken from the first six characters of the md5 hash of the function
name. For example, the name ”workfunc” hashes to a464a75d42e21723adcd4987d3446e39. Interpreted as a hex triplet, the
first six characters (a464a7) are the purple rectangles given in figure 3
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and end cycles from the command file itself, which is formatted like so:

set object 1 rect from 179404,0 to 250842,1 fc rgb "#1b9e61" # _noprofile__is_spmd

set object 2 rect from 250842,0 to 327124,1 fc rgb "#1b9e61" # _noprofile__is_spmd

set object 3 rect from 327124,0 to 337378,1 fc rgb "#4b6bf4" # F3

set object 4 rect from 337378,0 to 347424,1 fc rgb "#fe5c36" # F2

set object 5 rect from 347424,0 to 359266,1 fc rgb "#e1dffc" # F1

set object 6 rect from 359266,0 to 368981,1 fc rgb "#f89913" # 100

set object 7 rect from 368981,0 to 380284,1 fc rgb "#1b9e61" # _noprofile__is_spmd

The final column in each entry gives the function name; the penultimate column gives the function
color (as a hex triplet); and the coordinates (6th and 8th columns) give the position of the lower-left and
upper-right corner of each rectangle.

6.2 Multi-pass mode

Figure 5 shows the C64prof multievent graph for example.c. The program was run four times gathering
two types of events each, for a total of eight profiled events: instructions executed, loads, SPM loads,
SPM stores, SRAM loads, SRAM stores, DRAM loads, and DRAM stores. The graph shows, for
each host, the total number of each type of event that occured, colored by function. At a glance, the
programmer can see for each host which type of event dominates, as well as which function(s) dominates
each event type.

7 Conclusions

With C64prof, we have achieved our goal of providing Cyclops64 programmers with a powerful, easy-
to-use performance analysis tool. We have shown, with our experience using the profiler to analyze
the matrix-matrix multiply, FDTD, and Splash2 benchmark codes, as well as our LOC ease-of-use
metric, that the profiler is easy use. The profiler runtime overhead measurements show that the profiler
overhead is very low for long running code (the FDTD) and reasonably low (with consistently low
per-event overhead) on the short-running Splash2 benchmarks.

Even in the extreme case of the hand-coded near-optimal matrix-matrix multiply with no function
calls to serve as points of instrumentation, the manual instrumention routines provided the “calipers”
to allow the programmer to specify which part of the program to instrument, albeit with substantial
overhead.

The visualization extension to the profiler give the programmer a quick way to digest complex
tracefiles, and serves as a platform for programmer-created custom visualization tools.
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Figure 5: The C64prof visualizer multi-event graph for example.c (cropped view)

8 Future Work

Future C64prof work will be focused on two areas: general codebase maintence and the Fresh Breeze
case study. General maintainence involves bug fixes and feature additions (preferably demand-driven).
Access to real Cyclops64 hardware is sure to stimulate additional development in both categories.

The Fresh Breeze case study compromises using C64prof to instrument Cyclops64 impementations
of the Fresh Breeze execution model. [5]
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